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THE FLOW OF ELECTROGASDYNAMIC STREAM OVER A CONDUCTING SPHERE* 

0. K. VARENTSOV 

The problem of an electrogasdynamic stream flowing over a conducting sphere which 
simulates an electrostatic probe is solved. Volt-ampere characteristics of the 
probe are obtained and compared with those derived by approximate theories. The 
perturbation induced by the probe and associated errors are determined. The numeric- 

al analysis is based here on the assumption that the conducting sphere of finite 

diameter is located between two grid electrodes, one of which simulates the end face 
of a source of charged particles. Diffusion and inertia of particles are disregard- 

ed, and the hydrodynamic velocity field is assumed potential. 

An approximate theory of the electrostatic probe was proposed in /1,2/, without allow- 

ance for the perturbation by the probe of the electric space charge, on the assumption of the 
external field homogeneity and zero velocity of the gas stream; diffusion and inertia of 

charged particles was disregarded. The flow of an electrogasdynamic stream over a cylindrical 
probe was considered in /3/ on the same assumptions, except that velocity was not zero. The 
effect of gas compressibility on indications of the probe was approximately evaluated. The 
presence of a special shape probe which did not disturb the electric streamlines was invest- 

igated in /4/. In the experimental investigation /5/ the simplest theory which does not take 

into account the effects of the electric space charge near the probe and of its polarization 

was used. 

To determine the limits of applicability of approximate theories it is necessary to 

solve the more general problem of the flow of a stream with electrically charged particles 

over the probe. That solution is presented below. 

1. Statement of the problem and the method of solution. Let us consider a 
conducting sphere of radius U'positioned between two parallel infinite grid electrodes. We 

select the cylindrical coordinate system so that the axis Ox" is normal to the electrode 

planes whose equations are x0 = 0 and x0 = L, and passes through the sphere center x0 = zooI 
y" = 0. 

We assume that the grids are grounded, 'pO (0,~") = cp"(L, y”) = 0, permeable to gas, that it 
is possible to nelgect the effect of all thin supply circuits on the distribution of electric 

and hydrodynamic quantities in the inter-electrode gap, and that the sphere potential vsO can 

be controlled by an external voltage source. Parameters of the electrogasdynamic interaction 

are assumed small, which means that the distribution of gasdynamic parameters in the space 

surrounding the sphere are determined by conventional gasdynamic equations. It is further 

assumed that the fluid is incompressible , its viscosity negligible, and that the stream homo- 

geneous at infinity where its velocity U, is parallel to the OS-axis. Under these conditions 

the velocity field in the space surrounding the sphere is potential. 
The electrode x0= 0 can be considered as the end face of the charged particle source, 

and is assumed to work so that near the electrode x0= 0 the electric space charge density 

$(O, y") = q* is constant. Charged particles are carried by the stream of fluid from the 

emitter- to the collector-electrode. Their inertia is assumed negligible (e.g., when the 
particles are ions) and the P&let number high, which makes also the diffusion of particles 

negligible. Ohm's law for a charged component is of the form j" = Q' (V” - bVr+~“), where the 

particle mobility b is assumed constant. 
On these assumptions the distribution of potential + and space charge p in the inter- 

electrode gap is defined in the dimensionless coordinates 

by the following system of equations and boundary conditions: 

Ay=-q, (v-Vy)Vq+q2=0 (1.1) 

x = 0, y = 0, q = p; x = 1, y = 0 

(x - xgy + y2 = 9, y=ys; YEW, dy I ay = 0 (1.2) 

4rrbL 
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where v" is the known velocity distribution for a potential flow over a sphere. 

Previously obtained solutions /3/ related to the simplified problem Acp=O, (v-Vq)Vp=O; 

4 = Q, = CWM~, and E = E, = coast , as r - oo. In /2-55/ the effect of q on the potential distri- 

bution and the variation of electrical parameters away from the sphere were disregarded, and 

the electric charge in the regionoccupied by particle trajectories was assumed uniform. 

In the above formulation the problem is defined by four dimensionless parameters (1.3). 

In the absence of a sphere in the stream the potential 'po and the charge density Q, at point 

10 are determined by the solution of the one-dimensional problem of electrogasdynamics /6/ 

'p" = -_9, (1 - cp')q' = -_4a, cp (0) = 'p (1) = 0, Q (0) = B 

An "ideal" probe must, therefore, registerthe quantities q,, and 'pO. 

System (1.1) was numerically integrated using a rectangular grid which was nonuniform 

near the sphere. Zeidel's method was used for integrating the Poisson equation, and the 

method of characteristics for integrating the equation of the charge. The solution of system 

(1.1) was derived by the process of successive approximations /7/. 
In a number of calculations in which the sphere dimension was successively reduced, the 

computation region was simultaneously decreases. Because of this, region D" was computed for 

a = al. In that region the perturbations of one-dimensional electrogasdynamic stream are 

zero within the accuracy of the numerical method. Since perturbations of an electrogasdynamic 

stream decrease as the sphere radius is decreased, the solution in region Do is the same, when 

a= a,<=, , (within the same accuracy) as the one-dimensional solution. Hence region Do can 

be eliminated from the investigation. 
The accuracy of the control of full current maintenance over the cross section 5 = const 

was not less than 3%. Moreover, as radius a was reduced, the ratio of current on the ground- 

ed sphere to its radius I,la approaches I,,/ a = 4nq& , the value yielded by Sate's theory, 

i.e. the calculated limit coincides with the known analytic limit. 

2. The flow pattern. Using the simple reasoning of /2,5/ it is pssible to show that, 

depending of the probe potential (Pa , different modes are realised when charged particles 

reach the whole surface of the probe, or a part of it, or altogether fail to reach the probe. 

In the latter case the probe is surrounded by regionD which is free of charged particles and 

Fig.1 

may be either closed or infinitely extended /3/. When (Ps < 'or (cpf is the minimum potential- 
"the floating" potential- at which capture of particles by the probe occurs), region D 
adjoins only some part of the probe surface and vanishes as the potentialq, decreases within 

the interval (Cp*, mr). All these modes: mode 1 of closure (Cp8> or), 2 of the floating potent- 

ial (cps = cPr), 3 transition modes (cp* < 'ps< cpr), and 4 the mode of complete selection of part- 

icles which obtains when ~a~<~.Thesemodeshavebeenanalizedinnumericalproblem(l.l~and(l.2). 
As an example, the streamlines around a sphere of radius a = 0.05 located at the point 

at coordinate xo = 0.25 are shown in Fig.la. The degree of stream saturation was 8~4 and 
the sphere potential cps = 0.09. The zone comprised between curve ra and the sphere surface 
is not reached by charged particles. It is filled by characteristics of the second of Eq. 
(1.1) which begin at section OlP, of the sphere surface and finish on sections PlP,, where 
point PI is determined by the condition acpi&z = 0. The case in which the charge-free region 
is bounded downstream only by the collector-electrode is illustrated in Fig.l,b. The various 
positions of boundary ri of region D correspond to different potentials on the sphere. In 

mode 2 (qs = qf = 0.115) and boundary r 2 touches the sphere at the forward stagnation point. 

In mode 3 (cps = 0.075) and curve r; which is the continuation of boundary r3 of the upstream 
charge-free zonewithoutofchargeD,boundsregionD'fromwhichallparticles are caughtbythe sphere. 

Whencp,=cp,=U.U5thecharge_free zone degenerates into segment 0,x and curve r4' touches the 
sphere at the rear stagnation point. 

Note that potentials 'PfO and 'psO which correspond to the model in /3/ are not the same 

as the calculated 'Pf and 'P*. The presence of an electric field in the stream and the allow- 
ance for perturbations of the electric space charge induced by the sphere alters the 
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characteristic values of the potential. In the case shown in Fig.lbthe floating potential 
is less than 'p,O= 0.133, owing to the decrease upstream of &. The difference between 'P* 
and B.a-‘0.053 is due to the effect of the grounded collector and the absence of a charge in 
region D; both factors impede the transition to the total extraction mode. 

Let us consider the charge distribution in the interelectrode gap, The determination of 
Q on line r and on the axis of flow downstream of the sphere requires the determination of 

variation of q in the neighborhood of points PO and P, (Fig-l) at which the particle velocity 
is zero. 

Since points P, and P, are similar, it is sufficient to consider only point P,. 
We expand E, and Uy in terms of y in the neighborhood of point P,, taking into account 

the continuityandboundetiess of t?E,l & and q at that point. We have 

E@ = --a$ + 0 (y2), v* = --a& + 0 @a), a1 = (a&i az--'I)P* (2.11 

where a, is obtained using formula for the velocity of a potential flow overasphere. 
Let us investigate the characteristics of the second of Eqs. (1.1). The equation of 

characteristics and the relations along them are of the form 

dy ~1, -i Ey dq dKl dl:=-..--,7=-~ (2.2) 
Dg -+ E, I$, + $/ 

Integrating (2.2) with allowance for (2.1), we obtain the following law of variation of p 
along the characteristic in point P, neighborhood: 

(r=(c- &I"$, C=const (2.3) 

which implies that in that neighborhood 4 is small, (y)i,, = 0 and al = {ME,/ a~)~,. it is 
also obvious that P, is a singular point of the "saddle" type. 

As implied by (2-Z), parameter p always decreases or is zero on charged component stream- 
line. Thus along the boundaries rr and 1'~ in the floating potential and closing modes, as 
well as along tine axis downstream of the sphere, y= 0 in any mode. Consequently, boundary 

I? is a discontinuity line of P only in the transition mode, when the stream does not contain 

points PO and P,. 
Numerical computations had shown #at in mode 4 the distribution of p in the region down- 

stream of the sphere is preturbed (as compared with the uniform flow in the absenceofasphere) 
only in the narrow (of the order of the sphere diameter) zone adjacent to the stream axis. 
In the region upstream of the sphere charge perturbations occur in a wider zone, reaching 
their maxima at the stream axis and vanishing as y-tm. 

The radial distribution of P at cross section z -. 0.05; n-15: 0.25; 0.31); 0.55: 0.95 (curves l- 6, 

respectively) in the stream flowing over a grounded sphere of radius a = 0.05 whose center is 

at point X0 = 0.25; at a stream saturation 0=4 is shown in Fig.2. Longitudinal distrrbutions 

of p and p are also shown there for the same governing parameters. The dash lines correspond 
to undisturbed one-dimensional distributions of q,,(z) and an(z). 

lo 
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Fig.3 

These variations of the space charge in the neighborhood of the sphere produce a non- 
uniform distribution of p over its surface. In the vicinity of the rear stagnation point the 

charge p is always lower than its unperturbed value (70 due to the greater lenqth of streamlines 
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reaching that zone, and to the low velocity vi charges (vi =v -!-E) near the point of turn of 
these lines. As the sphere potential is lowered, velocity Vi of particles reaching it increas- 
es, which in conformity with (2.3) leads to the increase of 9 and of the nonuniformity of 
space charge distribution over the sphere surface. 

The distribution of 4 over the sphere surface is shown in Fig.3, where angle a is measur- 
ed from the forward stagnation point. Curve 1 corresponds to the example shown in Fig.2, and 
curves 2 and 3 relate to cp,=O.O5 and 0.075, respectively. 

The perturbation of charge 9 essentially depends on the position of the sphere in the 
interelectrode gap. Computations have shown that a grounded sphere set near the collector at 
z = 1 virtually does not affect the space charge density distribution. 

For instance, fox fi = 4,~~ = 0,~~ = 0.75, and a = 0.05 the relative perturbation of the 
charge does not exceed 2%. The only exception is the narrow zone close to the axis downstream 
of the sphere, where charge q vanishes. The perturbations of q considerably increase when 
the sphere is brought closer to the emitter. Thus at IO = 0.50 and 0.25 and fixed xemaining 
parameters, the relative perturbations of q near the sphere is -10 and 24%, respectively. 

The increase of the sphere perturbing effectonelectrical parameters when it is brought 
closer to the emitter is due to that near the latter the charged particle velocity V, + E, 
is low owing to the considerable braking field E, and, consequently, small variations of the 
electric field lead to considerable perturbations of the density of charged particles. 

An increase of the stream saturation by the electric charge is accompanied by the in- 
crease of the braking field at the emitter, with the corresponding fall of the particle 
"starting" velocity to zero /6/. This leads to the increase of perturbation of the space 
charge density with increasing parameter @. 

When the source operates in the saturation mode @==J), it is possible to estimate the 
increase of the charge space density. We shall make use of the fact that, when p=oo, the 
condition E, = -1 is satisfied at the emitter, which means that the over-all charge density 
induced on the emitter by the charged sphere and the additional space charge Aq=q(r,y)-q,,(r) 
is zero at any point of the emitter. When calculating the induced charge the sphere was re- 
placed by the point charge Q,= --o(cpO-- qs). Moreover, taking into account that in the sphere 
downstream region the perturbation of 9 is small, it was assumed that in the interval (.+o. 11 
Aq (z, y) s 0. As the result, we obtained the estimate 

Aq, = 2.a (quo - 'P&O-~ (2.4) 

where hq, is some mean value of the additional charge in the sphere neighborhood. This esti- 
mate is in a satisfactory agreement with the one obtained by numerical calculations for fi>4. 

3. The volt-ampere characteristics of the spherical probe. The method of 
determination of the space charge potential and density in an electrogasdynamic stream is 
based on the analysis of the probe volt-ampere characteristic. In the calculation of current 
flowing to the probe it is usual to assume that the diffusion currents are neglibibly small. 
If the charged particles reach the whole surface 2 of the probe, we have 

Is=+ndo=-(q) S.&do=-(q)Q, 
2 x 

(3.1) 

where Q, is the sphere charge. In the simplified theory of the probe it is assumed that /2,5/ 

<q> = (lo> Qs = C (tps - rpd (3.2) 

where 40 and TO are, respectively, the space charge density and potential at a given point of 
the stream in the absence of a probe, and C is the probe capacitance relative to the electrod- 
es. Note that for an incompressible fluid formula (3.1) also holds in the case when zone D, 
free of space charge and of closed form, adjoins the probe. The boundary of zone D is form- 
ed by the >Lo part of the probe on one side and by surface 8, with the generatrix r3 (Fig-l) 
on the other. Then, taking into account the impermeability condition for the charged compon- 
ent on ZS and for gas on &, for the stream of vector E through & we obtain 

which shows that it is possible to integrate in (3.1) over the whole surface C. 
Formulas (3.2) are approximate_ The sufficiency of the first of them may be judged by 

the results of the above numerical calculations. The second is to be compared with the more 
exact formula i8/ containing the additional term which takes into account the charge "displac- 
ed" by the probe 

Qs==(‘itp,--cprt)+Q,+qoV,, Qr=~hw+Vo 
r (3.3) 

where mis the distribution of potential in the absence of a sphere and cdo is the capacit- 
ance of en element of the sphere surface. Hence the error of the Probe ootential determination 
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by the second of formulas (3.2) without allowance for space charge perturbation is 

Acpo I= (clol', -+ Q,) I C 

With an accuracy to terms of higher order of smallness, Q, can be represented 

Qc = ,5 .&(I. - ro)c do 

(3.4) 

in the form 

which shows that, when the electrodes are grounded, Q? is always greater than zero, and in- 
finitely increasesasthe probe is brought closer to them. 

Thus the simplified theory generally yields lower values of the potential. The error A’po 
of potential determination is given by (3.4); it tends to zero as the probe size approaches 
zero. Computations have shown that variation of the probe charge due to perturbation of the 

electric space charge density is small, and in all cases considered here did not exceed 0.5% 
of the over-all charge of the probe. 

The calculated volt-ampere characteristics of a spherical probe of radius a -0.05 in a 

one-dimesnional stream fi =4 are shown in Fig.4 with the probe at points s0 _ 0.75 and s0 =: 0.25 

(curves A and B, respectively). The curves of I,,/ (4na) = qa (VP0 - (Pp,) = ISo0 are shown there by 
dash-dot lines, and the solid lines correspond to the calculated values of IS0 = I, i (4no), where 

7, is the current absorbed by the sphere and 4na is the capacitance of an isolated sphere. 

u.05 UI 

Fig.4 
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The shift of the characteristic to the 

left is due to the increase of Q, as the probe 

approaches the electrode. Charge perturbations 

are virtually absent and the increase of the 

volt-ampere characteristic slope is due exclus- 

ively to the increase of the probe capacitance 

as its distance from the electrode is diminish- 

ed. The curve of I = IsooC, / (4na), where C, is 

the sphere capacitance relative to the electrode 

is shown by the dash line for comparison. 

Thus the approximate theory can be applied 

in investigations of regions downstream of the 

point of maximum potential, provided that the 

probe is at a fair distance from the conducting 

surfaces. If this condition cannot be satisf- 

ied, the measured value of the potential can be 

corrected with the use of (3.4). The error of 

determination of the space charge density does 

not exceed 2%, since distribution of the charge 

is virtually unaffected. 

As the probe is moved closer to the emitter- 

electrode, the volt-ampere characteristic of a 

spherical probe becomes distorted by the con- 
siderable increase of the volume charge in the 

sphere neighborhood, by the increase of the probe capacitance, and, also, by the growth of 

charge Q,. The first two factors increase the slope of the volt-ampere characteristic 

because of the third which shift the point of intersection of characteristics with the axis 

0% to the left. 

Consequently, the error of determination of local electrical parameters by an electric 

probe close to the source of charged particles in the main associated with the considerable 
perturbation of the electric charge distribution. The upper bound of the error introduced in 
the measurement of q is defined by (2.4). 

With diminishing degree of saturation of the stream by the electric charge, the error of 

measurement decreases. The upper diagram in Fig.4 shows the dependence of the current absorb- 

ed by the sphere on parameter fl for z,,= 0.25; the dash line shows that dependence for a perfect 

gas, and curves 1,2, and 3 relate to spheres of radii a= 0.05, 0.025, and 0.0125, respectively. 

The author thanks A. B. Vatazhin for the considerable assistance in this work. 
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